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This paper reports numerrcal explorations of turbulent natural convection in a cavity of 
5:l aspect ratio, the heated and cooled surfaces (long sides) being vertical. An extended 
form of k - c eddy viscosity model is adopted, which had earlier been employed to study 
the same flow assuming two-dimensional (2-D) motion with perfectly insulating end 
walls. The present computations consrder the three-dimensional (3-D) behavior and allow 
realistic heat losses through the nominally adiabatic surfaces. These generalizations, 
particularly the latter, account for most of the differences that had hitherto existed between 
the experiment and computations 
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Introduction 

Some years ago. the authors (lnce and Launder. 19X9) proposed 
a variant of the usual k - i: model and showed that it allowed 
generally satisfactory prediction of naturally driven two- 
dimensional (2-D) flow rn tall cav*ities wtth one heated and one 
cooled vertical wall (well-insulated horizontal walls being 
taken as adiabatic). Some features of the predictions remained 
at odds with the experiments, howev/er. In particular. the 
significant measured departure from antisymmetry m the 
measured velocity and temperature profiles could not be closely 
reproduced, although full account was taken of the temperature 
dependence of the thermophysical properties of the tluid. 

Recently, the opportunity has arisen to reexamine this 
problem with the substantially greater computational resource 
now available. This has allowed an exploration of whether the 
mean flow motions in the third direction could have been 
responsible. Account has also been taken of probable heat 
losses from the insulated surfaces, The present contributton 
reports the outcome of that study. 

Mathematical and numerical model 

The geometry considered is shown in Figure I : it is the 5: I 
aspect ratio cavity studied by Cheesewright and colleagues, 
Our earlier study (Ince and Launder 1989) had examined just 
the hatched plane in the foreground while in the present 
exploration. half the cavity is considered that extends from the 
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back wall, A’B’C’D’. to the hatched plane of symmetry, ABCD. 
The heated and cooled faces (A’.4 AD’ and B’BCC’) are assigned 
the uniform temperatures reported in the experiments 
(Checscwright et al. 1986: Cheesewright and Lerokipiotis. 
1982). On all the other “insulated” walls, the finite thermal 
resistance between the outside ambient air at 2O‘C and the 
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Figure ‘I The flow section considered (ABCD center) plane; 
A’B’C’D side wall) 
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inner surface of the cavity was taken as that associated with 
conduction through I cm of perspex and 5 cm of insulant (with 
a thermal conductivity of 0.04 W mK). as indicated in the 
experiment, plus that attributable to the natural comection on 
the outside wall. For the latter. different Nusselt-Rayleigh 
number correlations were taken (Ozisik 1977). depending upon 
the orientation of the wall. For the vertical surfaces. the 
following expressions were used: 

Nu, = 0.59 (Gr,,Pr)’ ’ Gr,, I IO” I la) 

Nu I = O.IO(Gr Pr)’ ’ I. Gr,. > IO” (lb) 

On the horizontal walls. the following were adopted: 

Nu,. = 0.54 (Gr,~Pr)’ ’ Gr, 5 ? x IO- (L) 

Nu,. = 0.14 (Gr,.Pr)’ ’ Gr,, 1 2 x IO- (%) 

Dowmwrrl firc~ir7(] surfirw: 

Nu,, = 0.37 IGr,,Pr)’ A (31 

These may seem rather crude estimates in relation to the 
detailed numerical treatment applied to the interior of the 
cav*ity, but they are. arguably. about the best available. 
Moreover. they are sufficient to reveal the differences in the 
interior flow pattern associated with the different physical 
situations. 

The turbulence model employed in the cavity IS of the 
low-Reynolds number X. ~ i: eddy-viscosity type with the two 
modifications employed in lncc and Launder (1989): namely. 
the use of the Yap correction (Launder 198X) to reduce 
near-wall length scales when turbulence energy generation 
becomes less than dissipation. and use of the generalized 
gradient diffusion hypothesis (GGDH) (Daly and Harlovv 
1970) to represent heat transport. Unlike the usual tsimplc) 
gradient transport model, the GGDH can produce substantial 
heat fluxes at right angles to the mean temperature gradient. 
and this is quite important in accounting for buoyant effects 
in the vertically moving boundary layers on the actively heated 
and cooled surfaces. The complete mathematical statement of 
the turbulence model is given in Table I. 

Table 1 Turbulence model adopted (from lnce and Launder 
1989) 

2 
h,, pk 

3 

ZZ3c,,k-?@ 
UfUk 

2 o,, i: ?X, 

where pr = pc,,k’/i and k and i: are obtained from 

Dk 
I’ = Pk ~ 1: + 

Dt 

where / G k3=/;, /e = 2 5x, 

where x, IS the shortest distance to a wall 

- iu, 
Pk = -,I”,“, ~ PPJ,(Jg, 

ix, 

c,, = 0 09 exp -. 3.4/(1 + R,/50)*; (T,, = 0.9; rJk = 1 .o; 

r7 = 1.3, c,, = 1.44; c,? = 1.92[1 ~ 0.3 exp ~ R:] ; 

cy = 0 83: R, = pk2i$ 

Boundary conditions k = C = 0 at walls 

;k ,‘i 
= =o at symmetry plane . - 

’ x,7 ’ x,2 

The numerical computations were performed with a specially 
adapted v>ersion of the TEAM code (Huang and Leschziner 
1983). This tinite-volume solver employs the velocity compo- 
nents and pressure as dependent variables together with the 
mean temperature 0. the turbulence energy k and C. The 

Notation 

(‘P specific heat at constant pressure 
/! gravitational acceleration 
Hi gravitational acceleration vector. 0. -cl,0 

Gr,. Grashof number based on side length 

(A//Q r,,. ~ 7-, )L” 

j12 
k turbulent kinetic energy 
L side length 

Nu,. Nusselt number on exterior surfaces of cavity 
based on length of surface - 

Nu computed vertically avjcragcd value of Nusselt 

- number on inner surface of cavity 
NUo Nu at : = 0 for adiabatic secondary surfaces 

Pk generation rate of turbulent kinetic energy 
Pr molecular Prandtl number 

R, turbulent Reynolds number. ii/,’ err: 
ci I mean vTeIocity in direction, y, 
li , 14, kinematic Reynolds stress 
qJ kinematic turbulent heat Rux 
.Y horizontal coordinate with origin at left (hot) 

surface 

Y, Cartesian space coordinate 

!’ vertical coordinate with origin at lower edge of 

cavity 
hori/ontaI coordinate parallel to heated and 
cooled walls with origin at midplane 

GWPX 

/i volumetric expansion coefficient 
A0 temperature excess above ambient or midplane 

value 
1: turbulence energy dissipation rate 
i. part of i: associated with spectral transfer, 

c = {; - Z,‘(c’k’ 2’(-y,)2 

0 temperature fluctuation 
0 local mean temperature (absolute scale) 
ti thermal conductivity 
i thermal diffusivity. X:/X,, 

Ii dynamic viscosity 

A’, turbulent viscosity 
\’ kinematic viscosity 

0 density 

0, turbulent Prandtl number for 4 transport 
rc$ = 0. k. t:) 
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velocity components are staggered relative to the scalar nodes, 
each being located at the midpoint of the face of the control 
volume perpendicular to the velocity direction. This “stagger- 
ing” practice improves stability and has no adv,erse 
consequences in the simple rectilinear solution domain 
considered here. The usual SIMPLE algorithm is employed to 
iterate between velocity and pressure. Quadratic upwind 
differencing (the QUICK scheme, Leonard 1979) is employed 
to achieve accurate handling of convJectiv*e transport with 
acceptable stability characteristics. In lnce ct al. (1993). we show 
that, with this differencing strategy and the grid and turbulence 
model adopted here, numerical errors in Nusselt number and 
peak velocity are below 2%. 

In all cases, iteration to the converged solution was flagged 
by the usual requirement that overall normalized residuals for 
all the dependent variables had fallen to a negligible levtel. 

Results and discussion 

Two sets of 3-D flow results arc considered: the 3-D cavjity 
flow with boundary conditions, as discussed above. and the 
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Figure 2 Temperature proftles between heated and cooled walls 
at z = 0; &! experiments; ~ computations Including heat losses, 
and computations with zero heat losses 
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Figure 3 Mean velocity proflles between heated and cooled walls 
z = 0; key as In Figure 2 

same geometry but with perfectly adiabatic side, top, and 
bottom walls. The solution domain extended in the z direction 
from the vertical center plane to the side wall. in the s direction 
from the heated to the cooled surface and, in the J direction, 
from the top to bottom of the cavity. The grids employed were 
60 x 60 x 30 for the X, ~1. and : directions. As noted above, 
our earlier tests had shown that in a 2-D cavity the 60 x 60 
grid gave sensibly grid-independent results. Comparison is 
drawn with the experimental data of Cheesewright and his 
colleagues (Cheesewright et al. 1986; Cheesewright and 
Lerokipiotis 1982) in which the cavity comprised two vertical 
facing surfaces measuring 3.5 m x 1.0 m maintained at 
nominally uniform temperatures of 77.5”C and 31.5’C and 
enclosed by smooth, insulated walls. The active surfaces were 
0.5 m apart horizontally. Two-dimensional computations were 
also made. effectively, of the section ABCD, using a 60 x 60 
mesh. 

The very substantial effect of including heat losses in the 3-D 
calculations is seen in Figure 2. which shows mean temperature 
protiles on three horizontal planes within the cavity. The 
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principal effect IS seen near the top of the cavity (1’ H = 0.95). 
because it is there that the fluid is hottest. providing a large 
temperature difference between the inside of the top wall and 
the external atmosphere. By contrast. there is little heat transfer 
from the lower surface. because the fluid is cooled to nearly the 
temperature of the external environment. The effects on the 
mean velocity profile. Figure 3. are not as strong but, at 
midheight in the cavity (!“H = 0.5) the appreciably di(fcrent 

peak velocities in the upward- and downward-moving 
boundary layer near the heated and cooled vertical wall are 
captured for the first time. Indeed, it may be remarked that at 
J./H = 0.5. the predictions show a slightly stronger asymmetry 
than the measurements, although. at .rjH = 0.95. the very 
substanttal effect is shghtly underestimated. 

For the case of nonadiabatic walls, Figure 4 shows velocity 
vectors on the two vertical symmetry planes of the cavity. 
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Figure 4 Mean velocity vectors on vertical symmetry planes of cavity; a) primary ctrculation on x-r plane; and b) secondary circulation 
on z-y plane 
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Figure 4a presents the conventional Y J’ plane view. Although 
the velocity vectors are broadly antisymmetric in appearance. 
the circulation is certainly more vigorous at the top of the 
cavity than the bottom princtpally because of the unstable 
density stratification that results from heat loss through the 
upper wall. The large resultant change in effective v*iscosity is 
evident in Figure 5. Indeed, although, with an insulated top 
wall, the flow reverts to laminar before descending the cold 
wall. with heat losses included a still significantly turbulent 
natural convection layer is present. This is what is mainly 
responsible for the very asymmetric viscosity profile at 
midheight. In contrast wtth the differences at the top of the 
cavity, for y,:H = 0.05. the two viscosity profiles are almost the 
same, the flow reverting to laminar because of the stable 
stratification (marginally MOTP stable in the case where heat 
losses occur). Figure 4b shows the corresponding velocity 
vectors on the other vertical symmetry plane* plotted to the 

*The computations were as noted made only over one vertical half 
of the duct, results simply bemg copred to corresponding points on 
the other side of the symmetry plane. 
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Ffgure 6 Variation of vertically averaged Nusselt number over 
actrve walls; __ adiabatic secondary surfaces; - - hot 
wall, wrth heat losses; and ---- cold wall with heat losses; 
a) complete section from center plane to side wall: and b) detailed 
behavror near side wall 

same scale as those in Figure 4a. We note that there is a 
significant flow down the “insulated” walls, especially in the 
upper half of the cavity. A further striking feature is the 
variations in sign of the velocity in the interior of the cavity: 
for example. along the midplane y/H = 0.5, the flow is 
downward; whereas, just above it, the secondary motion is of 
similar magnitude, but is directed upwards. 

The effects of these three dimensionalities and heat losses on 
the Nusselt number are shown in Figure 6. The ordinate shows 
the vertically averaged Nusselt number divided by the value of 
thts quantity on the symmetry line for the case of zero heat 
loss through the insulated surfaces. The distribution of this 
parameter for the case of no heat losses is, in fact, remarkably 
uniform in the z direction except for z close to 0.5; here the 
presence of the side wall diminishes the natural convective 
motion causing a pronounced drop in Nusselt number. The 
behaviour is similar for the heated wall even when heat losses - 
arc permited, except that slightly higher levels of Nu occur 
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Figure 7 Comparison of 2-D and 3-D computations of 
temperature on the midplane: @ experiments, Cheesewright et al. 
(1986); __ 3-D computations with heat losses; and - - 2-D 
computations with heat losses 

because of the more vigorous velocities that arise in this case. - 
Indeed, there is a significant rise in Nu very close to the side 
wall associated with the appreciable downflow induced by heat 
leakage through the side wall (see Figure 4). The Nusselt 
numbers for the cold wall are appreciably lower simply because 
some 20% of the heat entering the cavity through the heated 
wall actually leaves through the insulated surfaces. 

Although the 3-D results discussed above are the most 
complete simulation, Figure 7 compares the thermal field on 
the plane ABCD with 2-D computations. The temperature 
profiles are nearly the same in the lower half of the cavity as 
found for the 3-D computations, although, near the top of the 
cavity, the core fluid in the 2-D computation becomes 
significantly warmer and, thus, further from the experimental 

behavior. The corresponding differences in the mean velocity 
profiles, Figure 8, are, however, fairly small. The turbulent 
viscosity for the 3-D simulation is, nevertheless, some 10% 
higher, Figure 9, because, apparently, of the additional 
straining associated with the z-direction gradients. 

Conclusions 

The study explored the extent to which failures of earlier 
predictions of the cavity flows of Cheesewright and co-workers 
(1982; 1986) could be attributed to the fact that these studies 
did not account for heat losses from nominally adiabatic 
surfaces or for 3-D effects. It was, indeed, found that accounting 
for both these factors led to much closer agreement with 
experiment than hitherto. Although both contributions were 
significant and acted in the same sense, accounting for heat 
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Figure 8 Comparisons of 2-D and 3-D computations of vertical 
velocity on midplane; key as in Figure 7 
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Figure 9 Comparisons of 2-D and 3-D computations of turbulent 
viscosity on midplane; key as in Figure 7 

losses through the top of the cavity could be said to be the 
most important single contribution. 
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